63. Two reactions at $10^{\circ} \mathrm{C}$ proceed with the same speed $\left(\mathrm{v}_{1}=\mathrm{v}_{2}\right)$. The temperature coefficient of the speed of the first reaction is 2 , the second is 3 . How will the reaction rates $\mathbf{v}_{1} /$ \mathbf{v}_{2} be related if they are carried out at $30^{\circ} \mathrm{C}$?
A) $8 / 27$;
B) $2 / 3$;
C) $3 / 2$;
D) $9 / 4$;
E) $27 / 8$.
64. The expression of the law of mass action for the process $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3}$ corresponds to:
A) $\mathrm{V}=\mathrm{k}\left[2 \mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]$;
B) $\mathrm{V}=\mathrm{k}\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]$;
C) $\mathrm{V}=\mathrm{k}\left[\mathrm{SO}_{2}\right]\left[2 \mathrm{O}_{2}\right]$;
D) $\mathrm{V}=\mathrm{k}\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$;
E) $\mathrm{V}=\mathrm{k}\left[\mathrm{SO}_{2}\right]^{3}\left[\mathrm{O}_{2}\right]$.
65. The dependence of speed of reaction on concentration of the reacting substances is expressed by the law:
A) Want Hoff's law;
B) the law of constancy of the composition;
C) the law of the masses;
D) Raul's law;
E) Avogadro's law.
66. An increase in the concentration of NO in 2 times in the reaction $2 \mathrm{NO}+\mathrm{O}_{2}=2 \mathrm{NO}_{2}$ leads to an increase in the reaction rate by \boldsymbol{n} times:
A) 2 ;
B) 4 ;
C) 5 ;
D) 3;
E) 6 .
67. An increase in the concentration of nitrogen by a factor of 2 in the reaction $\mathrm{N}_{\mathbf{2}}+3 \mathrm{H}_{\mathbf{2}}$ $=2 \mathrm{NH}_{3}$ leads to:
A) an increase in the reaction rate by 2 times;
B) reducing of the reaction rate by 3 times;
C) reducing of the reaction rate by 6 times;
D) reducing of the reaction rate by 8 times;
E) an increase in the reaction rate by 6 times.
68. An increase in the concentration of hydrogen by 3 times in the reaction $\mathbf{N}_{2}+3 H_{2}=$ $2 \mathrm{NH}_{3}$ leads to:
A) an increase in the reaction rate by 27 times;
B) an increase the reaction rate 9 times;
C) an increase in the reaction rate by 3 times;
D) reducing of the reaction rate by 9 times;
E) reducing of the reaction rate by 17 times.
69. An increase in the concentration of ammonia by 3 times in the reaction $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2}=$ $2 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$ results in:
A) an increase in the reaction rate by 3 times;
B) an increase in the reaction rate by 27 times;
